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Dynamic Response Of Steel-Concrete Beams With 
Partial Interaction Due To Moving Loads

Respuesta Dinámica De Vigas De Acero-Hormigón Con 
Interacción Parcial Debido A Cargas En Movimiento

ABSTRACT

Purpose –The main purpose of this paper is to propose 

a numerical model, which represents the dynamic 

responses of elastic steel-concrete beams. 

Design/methodology/approach –The numerical model 

is based on the lumped system with the combination of 

the transfer matrix method (TMM) and the analog beam 

method (ABM). The composite beams that are widely 

used in the construction of highway bridges are 

composed of an upper concrete slab and a lower steel 

beam, connected at the interface by shear transmitting 

studs. The field and point transfer matrices for the beam 

element of the elastic composite beams are derived. The 

present model is verified and applied to study the 

dynamic response of elastic composite beams subject to 

both moving force and mass. The effects of shear 

stiffness between the upper slab and lower beam and 

moving load velocity on the steel-concrete beams 

deflection are shown. 

Findings –Results indicate that the maximum deflection 

in the composite beam subjected to moving load, is 

significantly affected by the level of interaction between 

sub-beams and by the load type and velocity. 

Originality/value – Recently, a numerical model based 

on the lumped system with the combination of the TMM 

and the ABM was proposed to study the response of 

elastic steel-concrete beams with partial interaction, 

limited to static loading solely. In this study, the current 

proposed model is developed to study the dynamic 

response of steel-concrete beams with partial interaction 

due to moving loads of various velocities. The advantage 

of the proposed model, unlike previous models that are 

based on the combination of (TMM) and (ABM), is the 

ability to study the dynamic behavior of the elastic steel-

concrete beams with various end and intermediate 

conditions and different types and velocities of moving 

loads.

Key Words: Numerical model, Lumped system, Steel-

concrete elastic composite beams, Dynamic analysis. 

RESUMEN

Propósito –El objetivo principal de este artículo es proponer

un modelo numérico que represente las respuestas

dinámicas de vigas elásticas de acero-hormigón.

Diseño/metodología/enfoque –El modelo numérico se

basa en el sistema concentrado con la combinación del

método de matriz de transferencia (TMM, siglas en inglés) y

el método de viga análoga (ABM, siglas en inglés). Las

vigas compuestas que se utilizan ampliamente en la

construcción de puentes de carreteras, están compuestas

por una losa superior de hormigón y una viga inferior de

acero, conectadas en la interfaz mediante montantes

transmisores de cortante. Se derivan las matrices de

transferencia de campo y de puntos para el elemento de

viga de las vigas elásticas compuestas. El presente modelo

se verifica y aplica para estudiar la respuesta dinámica de

vigas compuestas elásticas sujetas tanto a fuerza como a

masa en movimiento. Se muestran los efectos de la rigidez

al corte entre la losa superior y la viga inferior y la velocidad

de la carga en movimiento sobre la deflexión de las vigas

de acero-hormigón.

Hallazgos: los resultados indican que la deflexión máxima

en la viga compuesta sometida a carga en movimiento se

ve significativamente afectada por el nivel de interacción

entre las subvigas y por el tipo de carga y la velocidad.

Originalidad/valor – Recientemente, se propuso un

modelo numérico basado en el sistema agrupado con la

combinación del TMM y el ABM para estudiar la respuesta

de vigas elásticas de acero-hormigón con interacción

parcial, limitada únicamente a carga estática. En este

estudio, se desarrolla el modelo propuesto actual para

estudiar la respuesta dinámica de vigas de acero-hormigón

con interacción parcial debido a cargas en movimiento de

diversas velocidades. La ventaja del modelo propuesto, a

diferencia de modelos anteriores que se basan en la

combinación de (TMM) y (ABM), es la capacidad de

estudiar el comportamiento dinámico de las vigas elásticas

de acero-hormigón con diversas condiciones finales e

intermedias y diferentes tipos y velocidades de cargas en

movimiento.

Palabras clave: Modelo numérico, Sistema concentrado,

Vigas compuestas elásticas de acero-hormigón, Análisis

dinámico.
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1. INTRODUCTION

Steel-concrete composite beams, consisting of a concrete slab lying on top of a steel beam, are widely 

employed in structural applications. Shear connectors attach the two components to transmit the horizontal 

shear force between them. Slippage may possibly occur at the interface between the two parts of the composite 

beam in case of partial or no interaction. Integrating concrete and steel in one structure yield a favorable result in 

the world of construction combining the high tensile strength and ductility for steel, and the high compressive 

strength of concrete. The growing use of these beams in structural applications demands fundamental 

understanding of their mechanical behavior under moving loads as the dynamic responses cannot be ignored, 

especially in applications such as highway bridges in which the safety and carrying capacity are critical. Due to 

the dynamic nature of the loads to which these bridges are subjected to, become imperative to perform a proper 

analysis and gain a comprehensive understanding of the dynamic response of steel-concrete beams under 
moving loads.

Three approaches are considered to evaluate the dynamic response of elastic beams and steel-concrete 

composite beams: analytical, numerical, and experimental approaches. The complexity of the phenomenon 

limits the analytical studies to very simple cases until the 1950s when a one-dimensional numerical model to 

study the dynamic effect of moving loads on bridge behavior was presented [1]. Moreover, [2] explored the 

dynamic response of a simply supported beam by solving analytically the governing differential equation. The 

findings of the analytical solutions performed by [3] and [4] indicated that the dynamic deflection of the beam is 

50% greater than its static deflection. Moreover, several methods of finite element analysis were proposed to 

analyze dynamic beam behavior such as Wilson's method and Newmark's method [5, 6]. The results of these 
studies agreed with those found analytically.

The dynamic response of steel concrete composite beams has been an area of great interest for researchers 

and engineers. Based on finite element modeling, a vibration analysis was performed on laminated composite 

beams experiencing moving loads based on a multilayered shear deformable beam element [7]. The dynamic 

model for two-layer partial interaction composite beams was solved with finite element simulations, applying 

Kant’s higher-order beam kinematics [8]. The consideration of the slip between the members of the steel-

concrete composite beam was taken by using Lagrange’s formulation based on finite element modeling in [9]. A 

3D finite element numerical model was developed to explore the bending behavior of high-strength steel–

concrete composite beams that are simply supported [10]. Non-linear behavior is considered on both a 

geometric and a material level. Furthermore, [11], introduced a 3D finite element model and parametric study of 

the dynamic response of simply supported, horizontally curved composite steel I-girder bridges using the 
ANSYS program.

Some authors have established experimentally validated numerical models. For instance, [12] presented for 

beam type bridges, a flexibility matrix identification approach based on induced responses by moving vehicle. 

The analytical mode decomposition is applied to extract the quasi-static component response of the induced 

responses by moving vehicle, and the influence line of the measurement point is derived by polynomial fitting. 

Comparative analysis between the numerical model and experimental data is conducted. Moreover, [13] 

performed a numerical analysis on the shear behavior of perforated transverse angle shear connectors (PTACs) 
based on finite element modelling. The FE model was based on the experimental results [14]. 

Many researchers have conducted experiments to gain scientific knowledge vis-à-vis the behavior of steel-

concrete composite beams. On the one hand, [15] have experimentally investigated the influence of shear 

connectors on the behavior of the steel-concrete composite beams under cyclic loading. An experimental 

campaign to assess the shear behavior of transverse angle shear connectors in steel-concrete composite 

girders was conducted by [14]. [16] for instance, investigated in their experiments on dynamic behavior of steel –

concrete beams under harmonic force, the influence of shear connection degree, the static load components, 
load amplitude and frequency, on the slip and deflection at various measuring points. 

Several methods could be considered to analyze the behavior of steel-concrete beams in partial interaction. For 

instance, the static behavior of composite beams with partial interaction was analyzed using a generic model 

developed by [17] based on the technique of Newmark, Siess and Viest. The Analog Beam Method (ABM) can 

be used to analyze the behavior of the real composite beam. The deformation, bending moment and shear force 

that represent the behavior of the real composite beam, can be analyzed using the ABM by concentrating the 

shear deformation in a thin layer, namely the shear layer, to ensure that the correct stiffness is used in this layer 

[18, 19]. This method was utilized in many studies [20, 21, 22]. In addition, the Transfer Matrix Method (TMM), 

initially developed [23], could be applied in various engineering applications. The TMM is relatively less 

demanding, and its implementation is simple compared to other numerical models. On top of that, it could 
account for intermediate conditions, e.g., flexible, rigid supports and internal hinges.
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2. NUMERICAL MODELS

2.1. The Governing Equations of the Elastic Composite Beam Element

The combination of the TMM and ABM was created to improve the modeling of static and dynamic responses in 

structures, specifically in steel-concrete composites [18, 19, 20, 23]. The transfer matrix method (TMM) 

combined with the analog beam method (TMABM) was employed to numerically predict the natural frequencies 

for elastic composite beams with different intermediate conditions. Based on this work, an exact dynamic field 

transfer matrix for evaluating the natural frequencies of composite beams has been suggested [20]. Further 

elaboration on the dynamic response of composite beams has included the application of the Riccati matrix 

method to evaluate higher natural frequencies of elastic composite beams with simple supports [24]. Moreover, 

the end shear restraint has also been included in the ABM [25]. In all aforementioned studies, models consider 

the distributed beam mass system. However, a numerical model based on the lumped system with the 

combination of the TMM and the ABM was proposed recently to study the static response of elastic steel-

concrete beams with partial interaction [26]. The lumped system, unlike the case of distributed mass system, 

allows for studying the dynamic behavior of the elastic steel-concrete beams with various end and intermediate 
conditions and for different types of moving loads.

The objective of this study is to propose a numerical model based on a lumped system to calculate the dynamic

behavior of one span elastic composite beam under moving load, by combining the ABM with the TMM. The

developed model is applicable for studying dynamic responses of steel-concrete elastic composite beams with

different end conditions, considering the effect of partial shear interactions. The model is checked by comparing

the results with those obtained by [27, 28]. Afterward, the proposed model is applied to obtain the normalized

deflection of the composite beam at different velocities of the moving load with different levels of interaction

between the concrete slab and steel beam. In further contributions, the lumped mass model will be developed

and used to investigate the dynamic behavior of the elastic composite beams subjected to moving vehicles with
end shear restraint and intermediate support.

The beam model used in this investigation is a composite steel-concrete beam, which is composed of an upper 

concrete slab and a lower steel beam. This type of beam is commonly used in highway bridges. The typical type 

of elastic steel-concrete beam and its coordinate system are shown in Figure 1. The composite beam is 
subjected to a load 𝑀𝐿 , moving at a velocity of v.

Figure 1: Coordinate system of a typical steel-concrete beam.

The general theory of the analog beam method was proposed in [18] then later developed in [19]. The analog 

beam is thought of as composed of two sub-beams, called the upper and the lower beams. The method of 
analysis is based on two kinematic assumptions:

1. Each sub-beam behaves separately as a simple beam, i.e., the shear deformation within the sub-beams is 
neglected, so the shear deformation is concentrated in a thin layer called shear layer.

2. The vertical displacement of the concrete slab and the steel beam is the same. 

For more details, the basic equations for an elastic composite beam are presented in [24]. It should be 

pointed out that the axial forces in the sub-beams are neglected. The state of forces and displacements of 

beam element is illustrated in Figure 2. For the elastic composite beam element shown in Figure 1, the 

equation of total bending moment is:

                                                   t cM M M= +                            (1) 
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Figure 2: Forces and displacements of beam element.
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2.2. Field Transfer Matrix 

In case of a lumped system, the load of the beam element is concentrated at the two end points, called nodes, or 

point elements, and the beam element between the two nodes is called field element. Figure 3 illustrates a 

lumped mass beam element with the state of loads. The equilibrium considerations, for the field element, give 
the equations:

Taking the second derivative of equation (8) with respect to x and bounding with equation (9), the governing 
equation is expressed as: 
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2.3. Point Transfer Matrices 

2.3.1. Point Transfer Matrix For Static Response 

2.3.2. Point Transfer Matrix For Free Vibration 

The distributed mass 𝑚 of the beam is concentrated at the point element and according to the equilibrium 
consideration of the shear force is:
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2.3.3. Point Transfer Matrix For Dynamic Response Due To Moving Load

The determination of the fundamental frequency 𝜔1 is essential for the setting of a convenient time interval ∆𝑡 of 
the load to move from a node to the next one [20, 24].
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2.4. Transfer Matrix Scheme

The actual beam is divided into N massless field elements and N+1 point concentrated masses. The properties 

of the composite beam elements, such as load density, moment of inertia, shear stiffness and modulus of 

elasticity are assumed as constants. Applying the transfer matrix method for the beam system, the relation 
between the state vectors at the left support SL and the right support SR is:

2.5. Boundary Conditions At The Ends Of The Beam

After the calculation of the overall transfer matrix [TM] is completed, the boundary conditions at both end 

supports of the beam are applied to calculate the unknown state vector elements at both ends. The boundary 
conditions for various types of beam end support are summarized in Table I, as indicated by [18].
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3. NUMERICAL VERIFICATION

3.1. Numerical Verification On One Span Beam

The matrix multiplication scheme is applied to find the displacements and forces at node n of the beam system 
as following: 

To examine the accuracy of the present lumped model, the dynamic deflections of elastic composite beams 

subjected to moving load are calculated and compared with those obtained by [27] for the case of one span and 
[28] for the case of three spans.

The numerical verification is hereby performed on a single span, simply supported beam of length 𝐿 of 1 𝑚, 

subjected to a moving load 𝑃 of 1 𝑘𝑁 at a velocity 𝑣 of 0.2 m/s as shown in Figure 4. The density of the 

material is considered equal to 1 t/m. The rigidity of the beam 𝐸𝐼 is chosen equal to 1 𝑘𝑁.𝑚2. A complete 
interaction between sub-beams is set in the model to numerically represent this case study.

Mid-point displacements versus time 𝑠 , given by the current model, compared to the ones obtained by [27], are 
shown in Figure 5. The results indicate a good agreement between the two methods.

Figure 4: A schematic of the one span beam [27].

3.2. Numerical Verification On A Three-Span Beam

The numerical verification of the current model is carried out on a three-span stepped beam subjected to a single 

load of 𝑃 equal to 9.81 𝑘𝑁, moving at a speed of 34 m/s [28]. Figure 6 shows the drawing of the continuous 

three-span beam. The continuous beam has a linear density of 1000 kg/m and three spans of 20 𝑚 length each. 

The flexural rigidity is set equal to 𝐸𝐼 of 1.96 𝐺𝑁.𝑚2 for the two beams at sides and is set equal to 2𝐸𝐼 of 3.92 

𝐺𝑁.𝑚2 for the central beam. Intermediate supports at 𝑥 = 20𝑚 and at 𝑥 = 40𝑚 were dealt with in the current 
numerical model as discussed in [20].

Mid-point displacements versus time 𝑠 , given by the current model, compared to the ones obtained by [28], are 
shown in Figure 7. It shows that a good agreement is obtained.



ISSN: 2789-7605 15Revista Ciencia y Construcción  Vol.4 No.4  Oct-Dic 2023

4. PARAMETRIC STUDY 

The parametric study is conducted on a simply supported elastic composite beam of length 𝐿, subjected to a 

moving load 𝑀𝐿, (a force 𝑃 or a mass 𝑀), moving at a velocity v (as shown in Figure 1). The aim is to investigate 

the influence of the composite beam parameters and the moving load velocity on the dynamic response of the 
steel concrete composite beam. 

Static responses of the composite beam for different levels of interaction between the sub-beams are already 

addressed in [26]. The dynamic behavior of the steel concrete composite beam is significantly influenced by the 
load type, its velocity, flexural rigidity 𝐸𝐼 and the bending stiffness ratio 𝜂:
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The normalized deflections of a simply supported steel concrete composite beam,

subjected to static load, moving force, or moving mass, for various velocities of the

force/mass and for several level of interactions, are depicted in Figures 8 and 9. The

calculations of the normalized deflections are based on the transfer matrix scheme

(section 2-4) that is developed by using the terminologies of point transfer matrices
and field transfer matrix (section 2.3 and 2.2 respectively).

Three load velocities of 60, 90 and 120 km/h and four levels of interaction of 0, 2, 20

and ∞ between sub-beams, are adopted in the dynamic analysis. Figures 8 show

results of normalized deflections for the cases of static and moving force. The

comparison between normalized deflection of moving force and moving mass is

shown in Figures 9. The three velocities were selected to show how the normalized

deflection undulates in the case of dynamic force around the results of static force

that is observed in figure 8, where the wave lengths increase proportionally to the

velocity. We can see that curves of the normalized deflection are clearly dependent

on the value of the level of interaction (ζ) specifically between its smallest and largest

value. For the intermediate values of ζ (2 and 20), ζ= 2 was chosen because its

corresponding curve represents an average curve of normalized deflection between

extreme cases (0 and ∞). Starting from the value of 20 for ζ the normalized
deflection began to be less sensitive.

Expectedly, it is observed that in the case of complete interaction between the upper

concrete slab and lower steel beam (ζ=0), the composite beam exhibits the lower

deflection among all other cases, in both, static and dynamic analyses. Moreover,

when the level of interaction between the sub-beams is reduced (ζ>0), the composite

beam deflection increases, and its maximum value occurs when ζ=. Moreover, due

to the dynamic nature of the load, it is observed that the normalized deflections, in

case of moving load or moving mass (as shown in Figures 8 and 9), present a

fluctuate behavior with respect to the case of static load. These fluctuations become

more significant for lower levels of interaction between sub-beams and for higher

moving load velocities. The highest increase in the maximum deflection due to

dynamic nature of the moving force is found equal to approximately 18 % for the

case of no interaction and for load velocity of 120 km/h as shown in Figure 8 (c). The

maximum dynamic deflection conversely to the case of static loading, might not

occur when the moving load is located at the mid-point of the beam because the

dynamic response is influenced by the inertial effects of the masses involved,

including the mass of the bridge and the moving mass. It occurs when the moving

load has reached the vicinity of the mid-point, due to dynamic effects. Regarding the

case of moving mass, it is shown that the highest increase in the maximum

deflection due to dynamic nature of the moving mass is found equal to approximately

16 % for the case of no interaction and for load velocity of 90 km/h only (whereas it

was 120 km/h for the case of moving load) as shown in Figure 9 (b). In addition, the

value of maximum deflection is found when the moving mass is near, but not the
same, compared to the case of moving force, as shown in Figure 9.

4.1. Dynamic Analysis Of Steel Concrete Composite Beam Subjected To Moving 
Load
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Figure 9: Normalized deflection for moving force and moving mass with different level of interaction 𝜻 (0, 2, 20 

and ∞) at different velocities, (a) 60 km/h, (b) 90 km/h and (c) 120 km/h.
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4.2. Dynamic Impact Factor

Figures 10 and 11 show the dynamic impact factor (the ratio of the maximum deflection obtained in dynamic

loading to the one obtained in static loading) in terms of moving force and moving mass velocities, for various

levels of interaction. The impact factor increases with the increase of the moving force velocity, as would be

predicted, especially at high levels of interaction. Referring to the equations (25, 26 and 27) for some cases of

interaction levels ζ, the change of the impact factor can be explained for moving mass (Figure 11) does not

behave similarly compared to the moving force (Figure 10), and this change is due to the consideration of the
mass effect into the moving load.

Figure 10: Dynamic impact factor for various moving force velocities and several levels of interaction.

Figure 11: Dynamic impact factor for various moving mass velocities and several levels of interaction.
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5. CONCLUSIONS

A numerical model based on a lumped system, combining the transfer matrix method (TMM)

and the analog beam method (ABM), is proposed to represent the dynamic behavior of elastic

composite beam. The dynamic responses of simply supported steel-concrete composite

beams with various levels of interaction between sub-beams, subjected to moving loads at

different velocities, are carried out in this study. Based on the results, the following conclusions

are drawn:

The proposed model is verified via comparative analyses with previous studies from literature

and is applied to study the dynamic response of elastic composite beams subjected to moving

load. The dynamic behavior of steel concrete composite beam is highly dependent on the level

of interaction between sub-beams, the dynamic nature of the load and the load velocity. The

consideration of the dynamic response of composite beams is critical, since the maximum

deflections observed for the case of a moving load become up to 18% higher when compared

to static loads. The consideration of the moving load as a moving mass is significant since a

higher dynamic impact factor is observed at lower velocities of the mass compared to the case

of moving force.
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